
THIS DOCUMENT IS UNCLASSIFIED

GCCS/DII COE System Integration Support

Technical Report/Study: Developer
Security Guidelines for GCCS COE

Version 1.0

February 20, 1997

Prepared for:

DISA/JEJA
ATTN: Ms. Claire Burchell
45335 Vintage Park Plaza
Sterling, VA 20166-6701

Contract Number: DCA100-94-D-0014
Delivery Order Number: 330, Task 2

CDRL Number: A005

Prepared by:

Computer Sciences Corporation
Defense Enterprise Integration Services

Four Skyline Drive
5113 Leesburg Pike, Suite 700

Falls Church, VA 22041

i

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION...1-1

2.0 SECURITY GUIDELINES...2-1
2.1 General Software Development Practices...2-1
2.1.1 Getting Beyond Convenience Programming...2-1
2.1.2 Permissions to the Group ID Level..2-1
2.1.3 Undermining/Abusing the System and Security Configuration..2-2
2.1.4 Un-initialized Variables...2-2
2.1.4.1 Program Internals...2-2
2.1.4.2 Shell Environment..2-2
2.1.5 Cleaning Up ...2-2
2.1.6 Sourcing Executables...2-3
2.1.7 Error Checking...2-3
2.1.8 Auditing Security-Relevant Activities...2-3
2.2 Legacy Software Maintenance and Enhancements..2-3
2.3 New Software...2-3
2.4 Design and Development Guidelines...2-4
2.4.1 Discretionary Access Control (DAC)..2-4
2.4.1.1 Umask Assignments ..2-4
2.4.1.2 Data and Text File Permissions...2-4
2.4.1.3 Shell Executable File Permissions...2-5
2.4.1.4 Binary Executable File Permissions..2-5
2.4.1.5 Directory Permissions..2-5
2.4.1.6 User Home Directory Permissions...2-6
2.4.1.7 System and Security File Permission Modifications...2-6
2.4.2 Identification and Authentication...2-6
2.4.2.1 Password Database Entries..2-7
2.4.2.2 Transmission of Passwords...2-7
2.4.2.3 Sharing Password Entries..2-7
2.4.2.4 Set User and Group ID Programs..2-7
2.4.2.5 Usage of Root Privilege...2-7
2.4.2.6 Use of Anonymous Accounts..2-7
2.4.2.7 User IDs ...2-8
2.4.2.8 Group IDs...2-8
2.4.2.9 Equivalency File (.rhosts and equiv.hosts) Usage ..2-8
2.4.3 Audit...2-8
2.4.4 System Configuration..2-9
2.4.4.1 Network Services...2-9
2.4.4.2 UUCP Usage..2-9
2.4.4.3 NIS, NIS+ Usage..2-10
2.4.4.4 NFS and RPC Usage..2-10

ii

3.0 SECOMP QUALITY ASSURANCE PROCEDURE..3-1
3.1 SeComp Testing Procedure..3-1
3.2 Reporting Non-Compliant Software..3-1

4.0 KNOWN SOFTWARE DEFICIENCIES...4-1
4.1 Identifying and Justifying Security Non-Compliance..4-1

5.0 CONCLUSIONS...5-1

APPENDIX A REFERENCES...A-1

-1

1.0 INTRODUCTION

The Global Command and Control System (GCCS) Developer Security Guidelines provide information to the
developer to ensure that new COE kernel, application, and database segments do not disrupt the security
configuration for a GCCS implementation. The security configuration for GCCS is based on the GCCS
Security Checklist, which can be found in Appendix B of the Trusted Facility Manual (TFM), that provides
the foundation criteria for certification and accreditation (C&A). The Developer Security Guidelines may be
updated as the GCCS Security Checklist and the C&A requirements evolve.

The security configuration for the GCCS is evolving to become an even stronger barrier against security
threats ranging from the accidental actions by an authorized user to the premeditated actions of a determined
hacker. This requires thoughtful consideration not only in the configuration of the system but also from the
software developer to ensure that vulnerabilities that are developed-in are held to a minimum. Indeed, the
software development process is the single-most important control aspect for enhancing or undermining the
capability of creating and maintaining a security configuration. The developers of applications and database
software simply must be made aware of the implications of poorly engineered software and its affect on the
task of creating and maintaining a security configuration.

The Developer Security Guidelines will provide this awareness to the developer of GCCS software. The
guidelines contained herein will be used by each software developer in the development of new software and
in the enhancement and maintenance of legacy software. Software that is submitted through the GCCS
configuration management (CM) processes will be required to adhere to these procedures and guidelines.
The vehicle that will be used for testing compliance to these guidelines will be the Security Compliance
(SeComp) tool. Software that fails to meet the criteria contained in the Developer Security Guidelines will be
identified during the SeComp testing procedure and will be subject to rejection on that basis. Software that is
known to not be in compliance with the Developer Security Guidelines must be justified in writing, stating the
reasons for non-compliance and providing a schedule for achieving compliance.

-1

2.0 SECURITY GUIDELINES

2.1 General Software Development Practices

This guideline is not an attempt to instruct the developer on the maintenance of a development cycle. The
guidelines are provided to inform the developer of the required state of security developed into and behavior
of software applications from an information security engineering perspective.

2.1.1 Getting Beyond Convenience Programming

Development and operations on a standalone, non-networked system, or workstation represent the most risk-
free environment which might be encountered. A closed environment allows freedom in style and privilege,
and often programming is strictly an exercise to accomplish a task or create a function which only the
developer will use or understand. Other than concerns about damaging the personal work areas, there is little
concern given to how a program might be used in the hands of someone else or in another environment.
Casually developed programs can easily become dangerous to more structured and shared environments,
either through unintentional, built-in threats, or the system configurations required by such a program.

Once a system or workstation becomes a shared entity, either through allowing shared physical access or
allowing connections across a network, the risk environment changes drastically. Unintentional but damaging
lines of code become destructive and the loose configurations forced by program runtime requirements render
the system vulnerable to intrusion. Developing for shared environments not only adds to the complexity of
the functional programs, but also extends the complexity of the risk environment where the small details must
be given more thoughtful attention.

The first guideline is to overcome the urge to convenience program. Convenience programming will be
touched upon in the following paragraphs, but most of all, it means to develop programs that make no
assumptions about their runtime environment, use only well-documented application program interfaces
(API), never trust to the integrity of the people or software that will execute the program, and most
importantly, do not take shortcuts.

2.1.2 Permissions to the Group ID Level

The GCCS supports user account and profiling management mechanisms that enable the security
administrators to control access to the GCCS application and database processes and objects. For these user
account and profiling management mechanisms to work properly, the processes and objects on the file system
must be maintained with cooperative permission sets that support the GCCS access control policy. The user
account and profiling management mechanisms are centered around the control of access to the group
membership. Therefore, controlling any access to a GCCS system object should consider a specific group
membership, or profile combination of groups.

Under no circumstances will application or database programs be developed to take advantage of wholesale
world permissions. Programs that require world permissions for access will be required to provide
justification for the extent of access.

2.1.3 Undermining/Abusing the System and Security Configuration

-2

The GCCS is permitted to operate by virtue of a strict adherence to the certified system security
configuration. The GCCS certified configuration is described and defined in the GCCS TFM.

Under no circumstances will application or database programs be developed that modify the security
configuration of the GCCS.

2.1.4 Un-initialized Variables

One of the most used techniques by the experienced hacker is to take advantage of un-initialized variables
known to be within an executable program. Initialize each and every variable in a program, whether it is a
binary executable or shell executable.

2.1.4.1 Program Internals

Few programmers have thought about comments and structure since they left college. It is time to think
about them again. The old story is true: maintenance happens. Try to ensure that, with a reasonable amount
of experience, another programmer can read and understand the code without undue difficulty. Use
meaningful variable names, do not sacrifice readability for convenience, and provide well commented
documentation for clarification. Complex regular expressions in sed, for example, should be avoided. Do not
use c-shell to program your scripts, use the bourne, korn, or posix shells. Do not pull software from Internet
sources that you cannot explain, validate, and thoroughly document. Delivered executable software scripts
and segment environments should not permit access to the system or any application without the appropriate
identification and authentication (I&A) (i.e., no backdoor entries).

2.1.4.2 Shell Environment

The shell is a great place to program quickly and conveniently, but it can be harmful if some precautions are
not taken. Shell executables are obviously more capable of being hacked than binary executables.

There are several common shell environment variables that have been used to hack an executable to gain
privilege. Again, this will not happen if these variables are initialized prior to being used in the program.

Under no circumstances will application or database programs be developed that require a privileged shell
executable to maintain write permissions to the group or to the world.

2.1.5 Cleaning Up

Anything a program creates that is not intended to become a permanent object on the file system must be
cleaned up before the program exits. It is even more important to pay attention to mode changes that may
occur during the execution of a program. The developer must ensure that any mode changes are normalized
before the program exits.

-3

2.1.6 Sourcing Executables

Another well known hacking technique is to take advantage of relative pathnames used when calling an
executable. All program calls to external executables must be sourced by referencing the absolute pathname
location of the executable.

2.1.7 Error Checking

Check for return values after every command or call no matter how trivial. This is part of the responsibility
that the developer shares in making each program=s execution predictable and reliable. Identify a strategy for
exception or error indications that are returned and follow through with that strategy throughout the program.
 Error and exception messages should always be used to identify the real problem and where the problem was
identified within the program. The program name will be included in the message.

2.1.8 Auditing Security-Relevant Activities

Applications that expect to operate on an operating system (OS) platform that executes with C2 class audit
capabilities should take advantage of these audit capabilities. The audit subsystem provides API=s that can be
used to record events in the system=s audit trail. It is recommended that all security-relevant events be
recorded at a minimum.

2.2 Legacy Software Maintenance and Enhancements

The distinction between legacy and new software exists because of the legacy nature of the GCCS Common
Operating Environment (COE) mission applications and database software. The expectation regarding
legacy software is that it should be on a migration path toward Level 8 COE compliance, to include
compliance with the security guidelines.

There are two approaches to achieving Level 8 COE, and therefore security, compliance. One way is to re-
develop the application or database software programs to adhere to the compliance requirements. The second
way is to re-engineer/modify the application or database software programs to adhere to the compliance
requirements. It is anticipated that reaching full COE compliance in any regard will not happen quickly,
therefore, in the interim it is expected that, from the security perspective, each application and database
program developer will continually Atweak@ the product to conform to the security guidelines set forth in this
document. Most importantly, it is required that the developers do not cause more violations once in
possession of this guideline when providing enhanced or patched software programs.

2.3 New Software

New software developed for the GCCS will be required to meet the guidelines stated in this document. The
fact that a software component is new development implies complete control over the software development
process and therefore the enforcement of these security guidelines within a new software development is
required and expected.

-4

2.4 Design and Development Guidelines

The following sections provide guidance for the development process to ensure that software integrated into
the GCCS does not violate or cause violation of the GCCS security policy.

2.4.1 Discretionary Access Control (DAC)

DAC permission sets should be controlled to the level of the group identification associated with the profile
required to gain access to an application or database program. This means that world read, write, or execute
permissions are not acceptable for the convenience of the program or programmer. For example, an
application program that is accessed by users with the GCCS user profile should expect that GCCS group
permission sets will suffice for any application operations. It is not acceptable to establish world permissions
just in case they are required for application or user interactions. Additionally, all files must be owned by a
valid user ID (UID).

2.4.1.1 Umask Assignments

The process or user umask value causes a default permission set to be assigned to all files created by a
process or user. Most Unix systems default to a umask setting that allows read and write (and execute for
executable programs) permissions for the owner, group, and world. This default is not acceptable for a
system that is attempting to control access to the file system objects.

Programs should not be written to assume a umask setting of any value. A program should be written such
that it will expressly establish the permissions of a file created by the program as required by the program
during normal usage. This may be done by creating the file and issuing the change mode command with the
appropriate permission set.

There are numerous ways to establish the umask value for a process. One method is to insert the umask
command and the umask value in the user home directory shell startup file. The root user is no different in
this respect and the root user=s umask value can be assigned in the root file system level (A/@) shell startup file
for the root user. It is not acceptable to establish or require a umask value for the root user that is anything
but 077. A umask value of 077 will cause files to be created with a permission set of 600 (rw- --- ---) and
directory permission of 700 (rwx --- ---). Only those files requiring execute permission should have the
execute bit explicitly set. If permissions are to be granted to the group or world level, the program must
explicitly establish these permissions after the file is created. This also infers that configuration files must
not be required to assign a umask value that violates the umask requirement.

The current user umask setting that must be adhered to (as a minimum) in the GCCS is 002. This removes
the world write access from the created file. The future direction for the umask is an assignment of 027,
removing group write and world read, write, and execute permissions from a created file. Developers should
strive to use a umask of 027 wherever possible.

2.4.1.2 Data and Text File Permissions

Data and text files created by an application or database program should set the file permissions for what is
required by its usage in the context of the program. For example, if a file is to be accessed by the GCCS
group community, permissions should be established to the level of the group. If the file is only required to

-5

be read and never written or executed, the file should be established with read permission for the group only.
If the file must be written to by the group members, the file should be established with write permissions for
the group.

World permissions to GCCS application and database program data and text files are prohibited to the extent
possible. If there are no known requirements for world permissions, no permission should be given. World
write and execute access to a GCCS application or database program is not acceptable without clear
justification. The normal acceptable permission set for data and text files is 440 (r-- r-- ---).

2.4.1.3 Shell Executable File Permissions

Shell executable file permissions should be set for what is required by its usage in the context of the program.
 For example, if a file is to be normally executed by the GCCS group community, read and execute
permissions should be established to the level of the GCCS group.

World read and execute permissions to GCCS shell executable files are prohibited to the extent possible. If
there are no known requirements for world permissions, no world permission should be given. Owner, group,
or world write access to a GCCS shell executable file is not acceptable without clear justification. The
normal acceptable permission set for a shell executable program is 550 (r-x r-x ---).

2.4.1.4 Binary Executable File Permissions

Binary executable file permissions should be set for what is required by its usage in the context of the
program. For example, if a file is to be normally executed by an administrative group community, execute
permissions should be established to the level of the administrative group.

World execute permissions to binary executable files are prohibited to the extent possible. If there are no
known requirements for world execute permissions, no world permission should be given. World execute
access to a GCCS binary executable file1 is not acceptable without clear justification. The normal acceptable
permission set for a GCCS binary executable program is 110 (--x --x ---).

2.4.1.5 Directory Permissions

Directory permissions should be set for what is required by its usage in the context of the programs that must
access it. For example, if a directory is to be normally accessed by the GCCS group community, then read
and execute permissions should be established to the level of the GCCS group. Write access may be
provided if there is a need to add, rename, or remove entries from the directory.

World read, write, and execute permissions to GCCS directories are prohibited to the extent possible. If there
are no known requirements for world permissions, no world permission should be given. World write access
or especially world write and execute permissions to a GCCS directory is not acceptable without clear
justification. The normal acceptable permission set for a GCCS directory is 770 (rwx rwx ---), with a
preferred permissions set of 750 (rwx r-x ---). Developers should strive to use the preferred permission set of
750 wherever possible.

1 This does not include operating system binaries except where appropriate to control access to

certain administrative executables.

-6

2.4.1.6 User Home Directory Permissions

User home directories are just that, user owned and maintained home directories. These directories should be
allowed to be protected to the level of the user and not be restricted from this goal by an application or
database program imposed requirement. There are better ways to implement the exception when information
must be shared between users or between users and an application program.

Requiring world permissions of any kind to a user=s home directory is not acceptable without clear
justification. If at all possible, group permissions should be restricted to read and execute. The normal
acceptable permission set for a user=s home directory is 750 (rwx r-x ---), with a preferred permissions set of
700 (rwx --- ---). Developers should strive to adapt to use the preferred permission set of 700 wherever
possible.

2.4.1.7 System and Security File Permission Modifications

Certain directories in the Unix file system should be considered untouchable by application or database
programs. These directories and their contents are not used by the general user community and are reserved
to isolate administrative and security-related files and programs. A short list of directories and files in the
category are:

/etc
/etc/shadow
/etc/rc
/etc/mnttab
/var
/usr

At most, these files may be required to be read by an application or database program. Under no
circumstances will the permissions on system or security-related configuration files be modified by an
application or database program. The acceptable permission set for files and programs in this category varies
somewhat, however, the least restrictive set of permissions should be 444 (r-- r-- r--) with 440 (r-- r-- ---)
preferred for non-executable files. Executable files in the /etc directory will never allow world access. If this
is required of an application file it should not be located in the /etc directory.

2.4.2 Identification and Authentication

Without a doubt, the Identification and Authentication (I&A) file system components are the most important
in the maintenance of a security configuration. The DAC permissions discussed in the previous section, are
one aspect in the protection of the I&A information. Another and more directly felt aspect by the user
community is the selection and maintenance of the individual password. The password provides the first line
of defense against most2 of the potential threats to a system.

2.4.2.1 Password Database Entries

The password databases may vary in a Unix implementation, but their maintenance and protection do not. It

2 Assuming that power or network components are susceptible to attack.

-7

is often the case that an application or database program may add an application-oriented user account entry
in the password file(s) on the system. This is not a problem provided that adequate notice is provided that the
account password must be changed to reflect the construction required by the GCCS policy as stated in the
GCCS TFM.

Under no circumstances will an application or database program require a Agimme@ or easily guessed
password, a blank or null password, or A+@ entry to be maintained within a password database or table.
Additionally, when entries are added to the password file by an application or database program, they must
provide valid information in all required password entry fields. In the case of the NIS+ password tables, the
minimum of the first seven fields of the password account entry must be provided.

2.4.2.2 Transmission of Passwords

Application or database programs will not require that un-encrypted passwords be transmitted across local or
wide area networks (LAN/WAN).

2.4.2.3 Sharing Password Entries

Application or database programs will not require that passwords be shared among user accounts.

2.4.2.4 Set User and Group ID Programs

Application or database programs will not require that set user ID (SUID) or set group ID (SGID) programs
be given write access to the group or world user community. The AC@ shell will not be used to construct
SUID or SGID programs. SUID and SGID programs will only be accessible to the least number of users
required.

2.4.2.5 Usage of Root Privilege

The granting of the root user privilege will be restricted to administrative or security level tasks that can only
be accomplished by the granting of that privilege. Under no circumstances will root privilege be granted for
program/programmer convenience.

Application or database programs will not require that the root user ID be required for login across a LAN or
WAN. This also infers that configuration files must not be required to set up this capability.

2.4.2.6 Use of Anonymous Accounts

Anonymous accounts that are required on the system must be capable of being configured in the following
manner, and using the Joint Deployable Intelligence Support System (JDISS) application anonymous account
as an example:

C Ensure that the anonymous user home directory is not owned by the anonymous user.

C Sanitize the /h/JDISS/data/share/etc/passwd file to reflect only the ftp, anonymous, and share
users (passwd).

-8

C Add the unique group entry ftpshare::150: to the /h/JDISS/data/share/etc/group file.

C Add the unique group entry ftpshare::150: to the /etc/group file.

C Modify the /etc/passwd entries for the ftp, anonymous, and share user=s to reflect the Aftpshare@
group.

C Execute chgrp ftpshare for the /h/JDISS/data/share/Audio, Documents, Images, Other,
Text, and Video directories.

C Execute chmod 755 /h/JDISS/data/share .

These actions effectively isolate an anonymous user to the anonymous hierarchy with no way to escape that
environment.

2.4.2.7 User IDs

Application or database programs will not require that UIDs be shared among user accounts nor will they
require that a specific UID be associated with a user account.

2.4.2.8 Group IDs

Application or database programs will not require that a specific group IDs (GIDs) be associated with a user
or group account.

2.4.2.9 Equivalency File (.rhosts and equiv.hosts) Usage

Application or database programs will not require:

C A specific hostname or user name be associated with an equivalency file entry. The spirit of this
guideline is to prevent conflicts when the secure features of an information service (i.e., NIS+
netgroups) are implemented.

C A .rhosts file be required for the root user at the root file system (A/@) level.

C A .rhosts file must be given write access to the group or world communities.

C An equivalency file must contain a A++@ entry.

2.4.3 Audit

Under no circumstances will an application or database program require the use of or undermine the purpose
of the audit files or capabilities of the system. The only allowable exception to this will be the capability of
an application or database program to be able to write an audit record into the OS audit process to be entered
into the audit trail.
Applications and database programs should consider the creation and use of application audit events for
security-relevant activities that occur within the program. The creation and use of the application audit

-9

events, and how to link these events to the audit daemon is a platform-specific process and must be
engineered considering the platform=s audit subsystem.

2.4.4 System Configuration

Under no circumstances will an application or database program undermine or substitute the purpose of or
use of the system and security-related files and programs.

2.4.4.1 Network Services

Under no circumstances will an application or database program require the use of a network service that
subverts or undermines the security configuration of the system. Services that have been identified in this
category are:

C finger,

C tftp,

C netstat,

C Unqualified cgi-bin programs,

C JAVA or JAVA-like programs that allow uncontrolled installation and operation of un-
segmented and unqualified software programs, and

C rexec.

Under no circumstances will an application or database program require the use of a .netrc file.
Additionally, no application or database program will require that a workstation be enabled in such a way to
perform Internet Protocol (IP) packet forwarding functions.

The developers should avoid using the rcp, rsh, and rlogin commands wherever possible. In most cases,
these commands can be replaced with more secure methods that accomplish the functions provided by these
commands. Developers should clearly document the justification for the use of these commands.

2.4.4.2 UUCP Usage

Under no circumstances will an application or database program require that the UUCP configuration be
exported by an NFS server. Like any other login account, this account will be assigned a password
constructed using the guidelines for a password selection and should never be required to be assigned a
gimme, null, or shared password. The /usr/lib/uucp/Systems file must be read/write protected to the owner
(usually UUCP) only as this file contains the login information (including the un-encrypted passwords)
required to log on to the remote systems. Therefore, an application or database program must not require less
stringent permissions on this file.

Many versions of UUCP have been created over the years, and it is imperative that the developer does not
implement an early version of the UUCP that have been shown to have gaping security holes. These security

-10

vulnerabilities range from subversion of the UUCP subsystem to the hijacking of root privilege. It is
recommended that the developer follow the guidelines stated in the Practical UNIX & Internet Security,
Second Edition, April 1996, by O=Reilly & Associates for the selection, configuration, and usage of the
UUCP subsystem.

Finally, if UUCP is not going to be used, then it must be disabled by deleting the UUCP executables or
modifying permissions to 0400 on all UUCP associated files and executables.

2.4.4.3 NIS, NIS+ Usage

The GCCS TFM Appendix B discusses the correct configuration and usage of the NIS and NIS+ services in
the GCCS environment. Applications and database programs should be developed to take advantage of the
NIS+ security features enabled in the GCCS environment. Under no circumstances will an application or
database program require that these features be disabled or usurped. The following guidelines apply and
must be considered:

C NIS+ high security mode using the DESauth credentials is employed in the GCCS Solaris
environment.

C NIS+ netgroups are used to control host access using the .rhosts, .hosts.equiv, and dfs file
system sharing.

C Master slave servers should not use NIS for password information.

C The /var/nis directory and its contents will not be required to maintain write permissions to the
group or world membership, and the contents should not be executable.

The GCCS TFM Appendix B also discusses the correct configuration and usage of the NIS services in the
HP-UX combined with NIS+ services in the Solaris platforms in the GCCS environment. The developer
must be familiar with the interactions between the two operating systems where NIS and NIS+ are concerned.
 The TFM Appendix B Section B2 covers the correct configuration of the NIS and NIS+ and the developer is
directed to the GCCS TFM Appendix B for this information. Incorrect configuration of the HP-UX NIS and
Solaris NIS+ can void the protections thought to be gained from their use.

2.4.4.4 NFS and RPC Usage

The NFS features of the GCCS are configured to take advantage of the security features offered by the NIS+
DESauth credentials. Under no circumstances will an application or database program require that settings
that usurp this security (i.e., unqualified use of anon=0) be activated. The NIS, NIS+, NFS, and RPC
commands all interact and involve dependencies on each other to affect the overall security of the network
connectivity. These features must not be configured in such a way to usurp the security measures taken to
control the network connectivity to the GCCS system. The developer is directed to the guidelines in the TFM
Appendix B regarding the use of these features for the GCCS environments that utilize both the HP-UX and
Solaris platforms.

-1

3.0 SECOMP QUALITY ASSURANCE PROCEDURE

3.1 SeComp Testing Procedure

The SeComp testing software and procedure are described completely in the SeComp Administrators Manual.
 Basically, the SeComp software is executed three times:

C Immediately before the application segment is loaded.
C Immediately after the application segment is loaded.
C Immediately after the application has been operationally tested.

The first execution of SeComp sets up the environment where the application segment will be loaded and
records the system=s security state information. The second execution of the SeComp will detect if the system
security configuration has been altered during the installation of the application segment. The third execution
of the SeComp will detect if the system security configuration has been modified during the operation of the
application segment.

3.2 Reporting Non-Compliant Software

As described in the SeComp documentation, an application segment that violates the documented security
configuration for GCCS will be reviewed. The review will consider the risk factors to the system and could
result in the application segment being returned to the developers to bring it into compliance.

-1

4.0 KNOWN SOFTWARE DEFICIENCIES

4.1 Identifying and Justifying Security Non-Compliance

The risk associated with some non-compliant features of an application may be mitigated by simply being
aware of the problem area. In these cases, it is possible that by performing some appropriate and controlled
configuration modifications, the risk associated with the use of the feature may be sufficiently controlled.
The key is having knowledge of the non-compliant feature or software.

It is imperative that any and all deviations from these guidelines be documented. A list of the deviations must
accompany the software when it is delivered. The documentation must describe the deviation in detail, the
justification for the deviation, and a schedule for bringing the application into compliance.

The Defense Information Systems Agency (DISA), along with the Joint Staff, will analyze any deviations
from this guideline to determine the acceptability of risk. If the risk is deemed unacceptable, the software
segment will be rejected and returned to the developer for correction.

-1

5.0 CONCLUSIONS

Maintaining the GCCS security configuration is supported and dependent on the foundation of application
and database software that comprises the GCCS. The security configuration will only be as effective as the
operational software allows it to be.

It is the responsibility of each software development facility to become familiar with this document and the
GCCS TFM, Security Policy, and Security Requirements for Automated Information Systems (AISs)
documentation. In addition to the COE functional compliance, all software developed for the GCCS
community must be compliant with the security guidelines and the spirit of the GCCS security policy. The
security compliance of each application and database segment submitted is a testable commodity and will be
tested in accordance with the guidance in this document as part of the segment verification and acceptance
process.

APPENDIX A

REFERENCES

A-1

APPENDIX A REFERENCES

Global Command and Control System Security Policy, Version 2.1, Draft, CJCSI 6731.01, April 30, 1996.

Department of Defense (DoD) Directive 5200.28, Security Requirements for Automated Information
Systems, March 21, 1988.

Global Command and Control System Trusted Facility Manual, Version 2.1, September 30, 1996.

Practical UNIX & Internet Security, Second Edition, April 1996, by O=Reilly & Associates.

